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Entropy of chains placed on the square lattice

Wellington G. Dantas* and Ju¨rgen F. Stilck†

Instituto de Fı´sica, Universidade Federal Fluminense, Campus da Praia Vermelha, Nitero´i, Rio de Janeiro 24210-340, Brazil
~Received 2 October 2002; published 14 March 2003!

We obtain the entropy of flexible linear chains composed ofM monomers placed on the square lattice using
a transfer matrix approach. An excluded volume interaction is included by considering the chains to be
self-avoiding and mutually avoiding, and a fractionr of the sites is occupied by monomers. We solve the
problem exactly on stripes of increasing widthm and then extrapolate our results to the two-dimensional limit
m→` using finite-size scaling. The extrapolated results for several finite values ofM and in the polymer limit
M→` for the cases where all lattice sites are occupied (r51) and for the partially filled caser,1 are
compared with earlier results. These results are exact for dimers (M52) and full occupation (r51) and
derived from series expansions, mean-field-like approximations, and transfer matrix calculations for some
other cases. For small values ofM, as well as for the polymer limitM→`, rather precise estimates of the
entropy are obtained.
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I. INTRODUCTION

The term dimer was introduced in the 1930s@1# as an
abbreviation for diatomic molecules in a model for their a
sorption on crystal surfaces. Later dimer models were
plied in the study of other physical systems such as fe
electrics, and much is known about their thermodynam
properties@2#. One relevant question in these models is
entropy associated with the placing of the dimers on a re
lar lattice. For the particular case of full covering of th
square lattice by dimers, this question was answered exa
some time ago, using a technique based on pfaffians@3–5#.
However, even the generalization of this problem for t
case of partial covering of the square lattice is still an op
question today, no exact result being known.

In this paper we address a generalization of the prob
of the entropy of dimers, considering entropy related to c
ering the square lattice with chains withM monomers each
~we will call themM-mers! as a function of the fractionr of
sites of the lattice occupied by monomers. The chains wil
considered flexible, so that there is no energy associate
bend them. Since the only energy in the model is the infin
excluded volume interaction, which forbids the presence
more than one monomer on the same lattice site, the prob
is athermal. It may be a simple model for the adsorption
monodisperse flexible chains on the surface of a crystal.
sides the exact solution of the problem forM52 andr51
mentioned above, other cases were already considered i
literature. Rather precise transfer matrix calculations w
performed in the polymer limitM→` for Hamiltonian
walks (r51) @6#. There are also mean-field approximatio
@7#, Bethe-Husimi lattice calculations@8#, and series expan
sions in q21, whereq is the number of first neighbors o
each site in the lattice@9#, and in those calculations approx
mate values for the entropy are obtained for both the
(r51) and partial (r,1) coverage cases.
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In this paper we obtain estimates for the entropy of fle
ible M-mers placed on the square lattice, using transfer m
trix techniques. This is done calculating numerically exa
values for the entropy of the problem on strips with fin
widths m and periodic boundary conditions, and then usi
finite-size scaling to extrapolate the results to the tw
dimensional limitm→`. We separate the problem in cas
whereM is finite or infinite~polymer limit!. Also, the case of
full coverage (r51) may be treated separately from the ge
eral case. In the general case, it is convenient to addres
problem in an ensemble that is grand canonical with resp
to the number of monomers placed on the lattice, whereas
full coverage it is easier to perform a microcanonical calc
lation.

The expressions we used to calculate the entropy
shown in Sec. II. The model is discussed in more detail a
the transfer matrices are described in Sec. III. Our results
the entropies as well as the extrapolation procedure and
results, may be found in Sec. IV. The simple on
dimensional case is solved in Sec. V, and Sec. VI prese
the final discussions and conclusions.

II. DETERMINATION OF THE ENTROPY

For the case of full coverage, it is convenient to obtain
entropy directly from Boltzmann’s expression

s~r51!5 lim
N→`

S

NkB
5 lim

N→`

1

N
ln V, ~1!

whereV are the number of ways to fill the lattice withN
sites completely withM-mers. In the polymer limitM→`,
we consider asingle Hamiltonian walk, that is, a self-
avoiding walk~SAW! that visits all sites of the lattice.

In the general case where a fractionr of lattice sites is
occupied by monomers, we define the grand-canonical p
tion function

J~z!5(
p

zpMG~M ,N,p!, ~2!
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wherez is the activity of a monomer andG(M ,N,p) is the
number of ways to placep chains withM monomers each on
the lattice withN sites. For the polymer limit, again a sing
SAW is placed on the lattice, and the partition function
defined as

J~z!5(
n

znG~n,N!, ~3!

whereG(n,N) is the number of ways to place a SAW withn
monomers on theN-site lattice. The density of monomer
may now be written as

r~z!5z
d

dz
f~z!, ~4!

where the thermodynamic potential per lattice site is defi
as

f~z!5 lim
N→`

1

N
ln J~z!. ~5!

In the thermodynamic limit, a Legendre transformation
lows us to rewrite the potential as

f~z!;max
r

$r ln z1s~r!%, ~6!

and thus the entropy may be written as

s~r!52E
0

r

ln z~r8!dr8, ~7!

with s(0)50.

III. DEFINITION OF THE TRANSFER MATRIX

We proceed defining a strip of widthm on the square
lattice in the (x,y) plane, so that 1<x<m and 2`<y
<`, with periodic boundary conditions in both directions.
transfer matrix may be built for this problem, inspired on t
prescription due to Derrida@10# for infinite chains in strips.
We thus consider the operation of including an additio
step to the strip in the positivey direction, addingm new
sites of the lattice. To properly take into account the stati
cal weight of the new step, we may define the state of thm
vertical bonds of the lattice, which are incident to the n
sites by specifying the following.

~1! The number of monomers already present in the ch
that passes through the vertical bond~it is equal to 0 if no
chain is present!. These numbers may be put into a vec
up&, with m components. It is necessary to keep track of t
information so that we know when to end each chain.

~2! The pairs of bonds which are connected to each o
through a path lying entirely below the reference line~see
Fig. 1!. These pairs may also be be specified by
m-component vectoruv&, associating a different positive in
teger to each pair of connected bonds and 0 to the ones
are not connected to each other. This connectivity inform
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tion prevents us from closing a ring at any level, since t
configuration is not allowed in the model.

As an example of these definitions, we consider the c
of pentamers (M55) placed on a strip of widthm54.
Among the possible configurations of a set of vertical bon
the one depicted in Fig. 1 is described by the vectorsuv&
5(0,1,1,0) andup&5(1,2,2,0). Elements of the line assoc
ated to this state of the transfer matrixT are obtained con-
sidering the possible continuations of the state$uv&,up&% one
step upwards, as shown in the two examples in Fig. 2. T
resulting state in Fig. 2~a! is described by the vectorsuv&
5(0,0,0,0) andup&5(2,0,4,0), while the final state in Fig
2~b! corresponds to the vectorsuv&5(0,0,0,0) and up&
5(2,0,0,0). Each monomer placed on a site between the
sets of vertical bonds contributes with an activityz to the
partition function, so that the element of the transfer mat
which corresponds to the first configuration, is equal toz3;
while the second configuration is associated to an elem
equal toz4 in the transfer matrix. Only the second config
ration contributes in the case of full occupancy.

For the polymer caseM→`, a single chain passe
through the whole strip, so that it is enough to describe
connectivity at a particular set ofm vertical bonds by indi-
cating the bond that is connected to the initial monomer
the chain~in y→2`) and the pairs of bonds connected
each other, exactly as was done in the original work of D
rida @10#. Thus, a single vectoruv& is enough to describe th
state in this limit.

Once the transfer matrixT is obtained, the entropy of the
model on the strip in the thermodynamic limit is related
the largest eigenvalue of the matrix. For the case of
occupancy (r51), the number of configurations is given b

V5Tr~T 8 l !, ~8!

FIG. 1. Example of a state form54 vertical bonds. The refer-
ence line indicates the set of vertical bonds whose configuratio
described.

FIG. 2. Possible continuations~reference line RL8! following
the configuration depicted in 1~reference line RL!.
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FIG. 3. Dimension of the
transfer matrix as a function of the
molecular weight (m52) and
width of the strip (M52), respec-
tively.
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whereN5ml is the number of sites and the elements of
matrix T 8 are defined by the limit

T i , j8 5 lim
z→`

Ti , j

zm
. ~9!

The entropy is then related to the largest eigenvaluel8 of
this matrix, so that

s~r51!5
1

m
ln l8. ~10!

For the general case, where a fractionr of lattice sites are
occupied by monomers, the grand-canonical partition fu
tion is related to the transfer matrix through

J~z!5Tr~T l !, ~11!

and thus the densityr(z) will be

r~z!5 lim
N→`

z

N

d

dz
ln J~z!5

z

m

d

dz
ln l, ~12!

wherel is the largest eigenvalue of the transfer matrixT.
This relation may be inverted to obtain the entropy as
function of the density using Eq.~7!.

IV. NUMERICAL RESULTS

The size of the transfer matrix increases very fast w
both the molecular weightM and the widthm of the strip
grow. This sets an upper limit to the widths that we were a
to consider for each chain of a given molecular weight. O
may observe in Fig. 3 that the growth of the size of t
transfer matrix is roughly exponential.

Furthermore, as was already observed in similar calc
tions for polymers@11#, the values of the entropy for eac
class ofM-mers are split into subsets with different finit
size scaling behaviors in each subset according to the w
of the strips, so that extrapolations must be done within e
subset. These splittings seem to be related to frustration
fects in the limit of the fully occupied lattice, and the subs
are indicated in Table I, where all the widths we conside
are given.

The data of each subset were extrapolated to the t
dimensional limit m→` using the Shanks transformatio
@12#, since we expect finite-size corrections to be expon
tial. Since at least three values for the entropy are neede
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a subset to obtain an estimate for the two-dimensional
tropy and its confidence interval, not all subsets may be
trapolated, so that, for example, no estimate could be fo
for hexamers (M56), where we calculated entropies fo
widths up tom57. The final estimate was chosen to be t
highest possible extrapolant, and the error associated
was obtained from the previous generation of extrapola
through

e5 lim
l 8→`

2usl 8212sl 811u. ~13!

The extrapolated values of the entropies forr51 and their
uncertainties are displayed in Table II, together with valu
obtained with other techniques and best values found in
literature.

Our results may be compared with other values in
literature. One may notice that the mean-field estimates
systematically smaller than the values obtained here, bu
such general trend is apparent for the Bethe-Husimi lat
results. The estimate for dimers agrees with the exact va

TABLE I. Entropies calculated for eachM-mer, divided in sub-
sets with the same finite-size scaling behavior.

Molecular weight Entropies of each subset

M52 $s18%5$s2 ,s4 ,s6 , . . . ,s14%
$s28%5$s3 ,s5 ,s7 , . . . ,s13%

M53 $s18%5$s3 ,s6 ,s9 ,s12%
$s28%5$s2 ,s4 ,s5 ,s7 ,s8 ,s10,s11%

M54 $s18%5$s4 ,s8%
$s28%5$s2 ,s6 ,s10%

$s38%5$s3 ,s5 ,s7 ,s9%
M55 $s18%5$s5%

$s28%5$s2 ,s3 ,s4 ,s6 ,s7 ,s8%
M56 $s18%5$s6%

$s28%5$s3%
$s38%5$s2 ,s4%
$s48%5$s5 ,s7%

M57 $s18%5$s2 ,s3 ,s4 ,s5 ,s6%
M58 $s18%5$s4%

$s28%5$s2%
$s38%5$s3 ,s5%

M59 $s18%5$s3%
$s28%5$s2 ,s4%

M→` $s18%5$s2 ,s4 ,s6 , . . . ,s12%
$s28%5$s3 ,s5 ,s7 , . . . ,s13%
3-3
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TABLE II. Entropy of M-mers on the square lattice for full coverage (r51) obtained through differen
techniques. The series results listed are truncations at second order inq21.

M Mean Field@8# Bethe@8# Series@9# Husimi @8# Transfer matrix Best value

2 0.19315 0.26162 0.26867 0.26740 0.2912060.00071 0.29156@4#

3 0.39268 0.42284 0.41699 0.41295 0.4120160.00002
4 0.46301 0.48166 0.48889 0.48951 0.5148660.0045
5 0.49229 0.50669 0.51008 0.50888 0.4991760.00091
7 0.51008 0.52217 0.52170 0.52284 0.5477060.15301
M→` 0.3863 0.4055 0.3967 0.40670 0.387060.0009 0.3866@11#
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obtained by Fisher and co-workers@3–5#, and the entropy for
Hamiltonian walks (M→`) is consistent with both transfe
matrix calculations@6# and the result of series expansions
to third order inq21 @13#, which is s`'0.386 29. In this
series, the first-order term is absent, while in the square
tice case (q54), the second- and third-order terms can
each other; and thus the third order entropy has the m
field value as shown in Table II.

Another relevant question is the value of the molecu
weight which maximizes the entropy at full occupancy~Fig.
4!. Mean-field and Bethe lattice results show maximum
tropy at M58 for a lattice with coordination numberq54
Refs. @7,8#, while series up to second order inq21 on the
square lattice as well as Husimi lattice calculations forq
54 result in a maximum entropy atM57. Our results sug-
gest that this maximum actually occurs atM54 on the
square lattice, if we suppose that that only one maxim
exists in the curves(r51)3M , and also disregard the valu
obtained forM57 due to the large uncertainty associated
it.

For partial occupancy of the lattice, the results are sim
to the ones shown in Fig. 5 for the entropy of dimers a
function of the fraction of occupied lattice sites,r. For all
the cases, we considered that the entropy displays a s
maximum. The density at which this maximum occurs
creases withM, getting closer tor'0.79, the value found in
the polymer limit. The densities and maximum entropies

FIG. 4. Entropy at full occupancy of the lattice as a function
the molecular weightM.
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listed in Table III, and it may be noticed that the largest va
for the maximum entropy occurs for tetramers, as was a
found for r51.

In the polymer limit M→`, the model of a polymer
placed on a strip in the grand-canonical ensemble displa
first-order phase transition at a critical activityzc , with the
coexistence of a nonpolymerized phase (r50) and a poly-
merized phase (r5rc.0) @14#. As the widthm of the strip
is increased, the discontinuity in the density at the transit
becomes smaller and in the two-dimensional limitm→`, a
continuous transition is found atzc'0.379 052 2@15#. The
entropy of a polymer on a strip of finite width is therefo
not defined forr,rc , as may be seen in Fig. 6, where th
extrapolated value of the entropy as a function of the den
for polymers is depicted. As larger widths are considered,
step in the entropy decreases; and in the two-dimensio
limit, we haves(r50)50.

V. ONE-DIMENSIONAL CASE

A particular case where results may easily be obtain
analytically is the one-dimensional problem (m51). In this
case, the dimension of the transfer matrixT is equal toM,
and we have

Ti , j5d i ,1d j ,11z~d i 11,j1d i ,Md j ,1!, ~14!

f
FIG. 5. Entropy for dimers as a function of the density. In t

inset, results of values obtained in this work are compared w
results from series expansion@9# and Bethe lattice@8# calculations.
3-4
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where 1< i , j <M . One may easily obtain the secular equ
tion of this matrix, which is

lM2lM212zM50. ~15!

The density may then be found as a function of the larg
eigenvaluel by using the secular equation above and a
expression~12!. One obtains

l5
12ar

12r
, ~16!

wherea5(M21)/M . Then the entropy may be found b
performing the integration in Eq.~7!, changing the integra
tion variable fromr to l. The result is

s5~12ar!ln~12ar!2~12r!ln~12r!

2r~12a!ln@r~12a!#. ~17!

This result is equal to the expression that is obtained if
coordination number of the Bethe lattice result@expression
~22! in Ref. @8#!# is taken equal to 2. The entropy in th
one-dimensional case vanishes, as expected, forr51, and
the maximum is located at a value of the density which
equal to 1/2 for monomers (a50) increasing monotonically
with a and approaching 1 in the polymer limita→1 ~Fig.

TABLE III. Maximum values of the entropy as a function of th
density.

M Density of maximum entropy Maximum entropy

2 0.64 0.66
3 0.71 0.70
4 0.76 0.74
5 0.76 0.73
7 0.78 0.72
M→` 0.79 0.56

FIG. 6. Entropy of polymers as a function of the density. T
squares correspond to extrapolations of the values on strips of fi
widths and the full line is the result for a strip of widthm57.
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7!, where the entropy vanishes for all values ofr. The value
of the maximum entropy is a decreasing function ofa.

For a given value ofM, the density that maximizes th
entropy is obtained through the equation

~12ar!2a~12r!@r~12a!#2(12a)51. ~18!

VI. CONCLUSION

In this paper we estimate the entropy of chains withM
monomers, each placed on the square lattice as a functio
the fractionr of lattice sites occupied by monomers. Th
estimates were obtained by extrapolating numerically ex
values for the entropy on strips of finite widthsm, calculated
using a transfer matrix approach, to the two-dimensio
limit m→`.

On the square lattice, our calculations indicate that
absolute maximum of the entropysM(r) occurs for tetramers
(M54). In the one-dimensional case, the maximum entro
of sM(r) is a monotonically decreasing function ofM, the
absolute maximums1(1/2)5 ln(2) being obtained for mono
mers and approaching 0 asM→`.

The problem of the thermodynamic properties of t
athermal model of chains formed byM monomers placed on
a regular lattice has been the subject of several simulatio
studies@16–19#. While some of these investigations estima
the insertion probabilityp(p,M ,N) ~the probability that an
additionalM-mer placed on the lattice withp chains on the
N-sites lattice does not overlap with any of thep chains that
are already present on the lattice!, and then proceed calcula
ing the osmotic pressure through integration@16,17#, the
pressure may also be estimated directly, the so-called re
sive wall method@18#. Extensive scanning method simula
tions were also performed@19#, and this method leads di
rectly to an estimate of the entropy, which may be compa
with our results. Since the smallest value ofM in the simu-
lations isM510, no direct comparison is possible with o
results. Nevertheless, at all densities considered in the s
lations (r50.27, 0.40, 0.53, and 0.63! the results of the
simulations for the entropy, properly renormalized, interp

ite

FIG. 7. Density of maximum entropy as a function ofa51
21/M .
3-5
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late our estimates forM57 and for polymers (M→`).
Finally, the problem ofM-mers confined inside strips o

finite width with closed boundary conditions, is an extens
of earlier work done on the thermodynamic properties
chains inside strips in the polymer limit@20#.
.
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